Quantum Mechanics [

Week 14 (Solutions)

Spring Semester 2025

1 Finding Clebsch—Gordan coefficients

Consider two angular momenta J 1 and J o with j; =1 and j, = % We define

e the (tensorial) product basis

Bl - {‘]1 - 17m1> ®

o= Soma b= () s} (L

e the total angular momentum basis J=J3,+7J 2,

(a)

e

What is the dimension of the Hilbert space for this system?

hi= 1= G ) | = () (12)

The first angular momentum can be in 3 = 2j; + 1 basis states, and the second
angular momentum can be in 4 = 27, + 1 basis states. Thus the dimension of the
Hilbert space is 3 x 4 = 12.

What are the possible values of the total angular momentum j, obtained by adding
J1 and Jz?

Using the formulas of addition of angular momenta, the possible values of the total
angular momentum are |j; — ja|, .. |71 —Jjo| + 1, ..., j1 + 2. In this case, the possible
values of the total angular momentum are j =5/2, j = 3/2, and j = 1/2.

On the plane (mq,ms), plot the possible values of m; and ms, and draw the lines
m = constant, where m = my + ms.

The possible values of my, ms, and the lines of constant m = m + msy are shown in
Fig. 1.

What is the dimension of the subspace with a fixed m for each possible m?

The dimension is equal to the number of points lying on the lines in Fig. 1. The
space with m = 5/2 has only one state (| + 1,+3/2)). This corresponds to the
top-right corner in Fig. 1.

The space with m = 3/2 has two states (|0,+3/2), | +1,41/2)). The space with
m = 1/2 has three states (| — 1,43/2), [0,+1/2), | +1,-1/2)).

The result for any m = —5/2,-3/2,-1/2,1/2,3/2,5/2 can be written compactly
as: g(m) = [7/2 — |ml].
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Figure 1: Possible values of m; and ms, and of the lines at which m; + ms is constant.

(e) Calculate the Clebsch-Gordan coefficients (my, mo|j,m) for j = 5/2 and —2 < m <

g. Hint: Apply J~ to }j = g,m = g> and go "up the ladder’.

From the theory of addition of angular momenta, we know that we can break the
Hilbert space of the 2 angular momenta, which as seen before is 12-dimensional, into
a sector with j = 5/2, a sector with j = 3/2, and a sector with 7 = 1/2. The state'
|mi = +1,my = +3/2) has m = +5/2, which is the maximum possible value of the
angular momentum. This state must belong to the sector with j = 5/2. So the first
Clebsh-Gordan coefficient which we find is (1,+1,3/2,+3/2|5/2,+5/2) = 1.

The states m = +3/2 are as seen before, |1,0;3/2,+3/2) and |1,1;3/2,1/2), we
have to find the linear combinations of these which belong respectively to the sector
with j = 5/2 and with j = 3/2.

To do this we can use that J~|5/2,+5/2) must have j = 5/2 (as J~ commutes
with  the operator J2. Using J = 71+ J» and using
J1 11, ma; jz, ma) = Vil +1) —ma(my = Dlj,my = 1552, ma),

In the following, to clarify the notation, we include in the definition of the states their total angular
momentum, so that the states are written as|ji;mq, joms). For the states of the composite system in the
J, m basis we write |, m).
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52_’j17m1;j27m2> = \/jZ(]2 + 1) - m2(m2 - 1)‘j17m1;j27m2 - ]'> we find:

J15/2,45/2) = (ju + J2) 11, 4+1:3/2,43/2)

5 (5 5 (5
= /=x(=+1)=Zx(2=1)[5/2,43/2) = V5|5/2, +3/2)
27\ 2 27\ 2
=V1x2—1x0[1,0;3/2,+3/2)
3 5 3 1
3 3 3 1
=V2|1,0: 2,42 1,4+1;2, 4=
f’ ,0,2,+2>+\/§‘ + ,2,+2> ,

(1.3)
which implies

LAV AW
2" 2/ V5|72 2 5
Applying J~ other times, we get iteratively all states belonging to the j = 5/2
sector. The result is:

3 1
1.4+1,: =, +=—) . 1.4
,+ ,,2,+2> (1.4)

1 1 2
‘g,+§> = X ( 5(\/5 1,—1;;,+g>
VixG+n-3(G-1)
3 1 3 3 1 31 (1.5)
1,0, 2, 4= 2(v211,0,2 201,41
+V3 ,0,2,+2>)+ 5(\/_ ,0,2+2>+ LG - 2>>>
1 3 3 31
=—(|1,-1 1 31,41;2, -2 ) ) .
V10 <‘ ’ ’2’+2>+\/6‘ "5 > Ty 2>)
Similarly,
5 1 1 3 3 1 31
S y=—o(]1,1;2,-2 - 12, = 1.6
‘2’ 2> \/ﬁ( Y 2> 2> ’2’2>>’ (1.6)
5 3 2 3 3 3 31
2 =2V =4/211,0,2, -2 2, -1, -2 1.
'27 2> \/;' 70727 2>+\/; 7 727 2> Y ( 7)
5 5 3 3
R Y | P P O 1.
‘27 2> ‘ Y 727 2> ( 8)

(f) Using the orthogonality relation (j',m/|j,m) = ¢;;, express ‘j = %, m = %> in the
basis Bj.

We have expressed all the states |—, m> in By, and now we move to |§, 2> It will

be a linear combination of |1) |1) and |0) |2), just like |2, 2). The idea here is that,

using a linear combination of these two vectors we can build only two vectors (up
3 3

to an overall phase) that are orthonormal. Thus, |3, §> is the only vector in the
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sub-space m = 5 orthonormal to |3, 2> We express |3, 2> using the two states in
B; with m = %

23) = 05 +B811)]3) (1.9)
Then, its product with }g, %>

(331339 = Vior /35 (L.10)
By the orthogonality relation this product must be zero, so we have % = — %

Using the normalization condition |a|? + |3]?> = 1 and assuming the phase of « to

be zero, we obtain
3.3 = 23 -2 L. (L11)

Calculate the Clebsch—Gordan coefficients (my, ms|j, m) for j = 3/2 and j = 1/2.

The coefficients for |2, 2> were determined in the previous question. Now, for the
state ‘2, 2> we use the same method as in part (e). We find

13 = DD EmD - s LD 1)

As for the states }%,m> with m < 0, we resort to symmetries. In particular, for
each pair of (j,m), there exists a phase factor «; such that Vm;, my, we have:

<m17m2|j7 m> = ¢’ <—m1, _m2|j7 —m) . (1~13)

This phase depends only on j and not on m. Since all Clebsch-Gordan coefficients
are real, the phase takes only two values, +1. Thus,

<m17m2|j7 m> = (_1)j1+j2_j <—m17 —m2|j, —m) (1-14)

We only need to determine the sign for one term: for example, when applying J-
to Eq. (1.12), the state |1)|—4) becomes |1)|—2) and its coefficient acquires a
positive factor A/~ -, which is therefore negative. We deduce that for j = % the
Clebsch—Gordan coefficients are antisymmetric for m — —m. Therefore we have

L = VERFDID - VB0 -2 (1.15)
-3 = VIR - - o). (116

For the case of j = 1/2, we follow the same procedure as with the j = 3/2 case.
The state |§, 1) belongs to the sub-space generated by the states [—1)|2), [0) |1),
and |1) ‘ > and is orthogonal to the states }2, 2> and |2, 3) whose decompositions
we already know in the basis |m;) |ms). To simplify the calculations, we notice
that, as |2, 2> and |2, §> are normalized, ‘%, %> is obtained (up to a phase) by the

vector product of these two vectors (since all of them have to be orthogonal to each
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other). In the basis {|—1)|2),|0)[3),[1) |[-2)} we obtain the coefficients of this
vector product:

AN
\/gx\/;{,): L (1.17)

0; therefore

By convention, we choose <1, % >
=0 5)+ 7 11 ]-3) (1.18)

33 = 5 -1

Applying the ladder operator J~ to the left-hand side and jf + j{ to the right-hand
side, we obtain

-3 = H DB -5 0 -5 +/E |- (119)

The coefficients are symmetric under the transformation m — —m.

2 Pair of particles

We consider a system of two particles with spins s; = % and sy = %, and their interaction
is described by the following approximate Hamiltonian

N 4F4 A A
H= h—jsl-s2, (2.1)

where Ej is a constant with units of energy. The system is initialized in the following
simultaneous eigenstate of S, S, S)., Sy.:

[(0)) = |3: 5530 3) - (2.2)
Determine the state of the system at time ¢ > 0. What is the probability of measuring

the state ‘37 %; %, —%>? We use the notation |sq, s9;mq, ms).

Due to the coupling term between the two spins, the Hamiltonian is not diagonal in the
uncoupled basis. We can circumvent this by expressing it in the coupled basis. Firstly,
using S; 4+ So = S, we can readily show that:

S8, =5[8"-81-8)) (2.3)

Using this result, the Hamiltonian takes the following form:
= % ERSCHEH (2.4)
It is easily verified that the Hamiltonian is diagonal in the coupled basis |s1, $2; s, m) since
S? sy, 89;8,m) = h2s(s + 1) sy, 59; 5, m), (2.5)
512/2 |1, 82;8,m) = h2s12(s12 + 1) |1, 8958, m) . (2.6)
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To determine the time evolution of the system, we need to express the initial state, which
is simultaneous eigenstate of S?, S2, Si., S., in the coupled basis |s1,s2;s,m). The
initial state has a total quantum number m = 1 and from this fact, we can write down a
genral superposition

s LD, (2.7)
=1 (2.8)

where we have used the convention |si, s9;s,m) and |sq, S2;mq, ma) for the kets in the
coupled and uncoupled bases, respectively. Our task now is to determine the coefficients.
We start first by applying the raising operator on the first state,

le

SR s L) =ahl3 55 31331302 (2.9)
Since S* ’2, 2,1 1> and due to the normalization condition, we find a = —v/3/2 and
b = 1/2. Similarly, for the second state, we have:
$T13.5:2,1) = chv33 %s%>%>+dh!%7%;%’%>> (2.10)
and since St |2,1:2,1), we obtain ¢ = v/3/2 and d = 1/2 (and the normalization condition
was used). In summary, we have:
V3 1
31 _ 3 1.3 _1 3 1.1 1
5L =—5 1355 -3) + 5[5 559) (2.11)
V3 1
3 1. _ 3 1.1 1 3 1.3 _1
5,572,1>—7 §a§a§7§>+§ 5315 3) (2.12)

Using this result, we can write our initial state in terms of the coupled states by simple
algebraic manipulation,

3,111y
1202/ T

We continue by considering the time-evolved state by applying the time evolution operator

[h(t)) = exp{—iHt/h} [4(0)). We write this explicitly as follows:

(e = exp { — 12 g2 g —s]}[“f

2 L11). (2.13)

2797

l\')lw

|%, 1;2,1> —i—

2

MIH

V3
2

532 0)+

\/g—zEth?)l —iE1t/h |3 1.
:76 !/ 2’2’21>+ W 2029 ’1>

where F; = —5Fy and Ey = 3Fy. In the first to second line, we have used Egs. (2.5),
(2.6).

Finally, the probability to find the system in the state |%, %; %, —%> is given by:

3 . ,(Ey—FE))t 3 . ,8Eqt
P=| (38 2o = a2 22 B0 380 o)
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3 Hyperfine Splitting of a Hydrogen Ground State in
a Magnetic Field

A. The hyperfine splitting refers to the splitting of energy levels in an atom due to the
interaction between the nucleus and the electron cloud. For the Hydrogen atom, this is
the interaction between the proton and the electron. This splitting is caused by
electromagnetic multipole interaction and results in very small energy shifts and
splitting. The corresponding Hamiltonian of the interaction is:

4e
HHFS = ﬁSe . Sp. (31)

Note that this is the simplified form of the interaction, which is relevant for the ground

state of the Hydrogen atom. The parameter € is a positive constant with units of energy,
and it is defined as: )
Hogp€

€= ———— 3.2

3rm,mea’ (3-2)

where ji is the magnetic permeability of free space, g, is the gyromagnetic ratio of the

proton, e is the electron charge and m,, m. are the masses of the proton and electron,

respectively.

There are two natural bases in this problem. The uncoupled basis |m., m,) (first entry:
electron, second entry: proton) is

=11, 2)=[1, B=HIN. 4= (3.3)
The coupled basis |jm) of eigenstates of J? and J,, is
where J =S, + S,

(a) Find the matrix elements of Hyprg in the uncoupled basis. Calculate the energy
eigenvalues and the eigenvectors.

We write the Hamiltonian in terms of the components of the spin operators of each
particle, as follows:

H= elofo, +olo) +oloy). (3.5)
where 0% are the Pauli matrices. Acting on each ket of the uncoupled basis with
the above Hamiltonian, and then taking the bra for all possible combinations, we find
the matrix elements of the Hamiltonian (i|H|j) where i,5 € {|T1),|TL), [41), [44)}-

The corresponding matrix form is

1D D T
[T/ e 0O 0 0
[T 0 —€ 2 0
I ] 0 2¢ —e 0
Ww\o o 0 e
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Due to the block-diagonal form of the above matrix, we can easily extract the
energies and the corresponding eigenvectors. For the 1 x 1 blocks, we have:

) =111 (Bi=e), [va)=1) (Ei=e). (3.7)

Then, we have one 2 x 2 block, which we can diagonalize and find:

o) = —= | FD+ID | (Ba=e), Ius) = —= | 1= ], (B ==30). (38)

5l 5l
V2 V2
There is a three-fold degeneracy in the energy F = ¢, which we recognize as the
triplet state.

Find the matrix elements of Hypgs in the coupled basis. Calculate the energy
eigenvalues and the eigenvectors.

The Hamiltonian is now expressed in terms of the total spin operator. By using the

fact that S, + S =S, we find:

N 1742 42 42

Se-spzé[s —Se—sp] (3.9)
The Hamiltonian then takes the following form:

A= 72; [S 8- sf,} (3.10)

Following a very similar procedure as in part (a), we can compute the matrix
elements (i|H|j) where 4,5 € {|1,1),]1,0),]1,—1),|0,0)}. The corresponding
matrix form is

L1 (1,00 [1,=1) [0,0)

1,1y [ e 0 0 0
|1,0) 0 € 0 0

H=11-1] o 0 ’ 0 (3.11)
0,0\ 0 0 0 -3

This matrix is already in diagonal form. The states |1,1),]1,0),|1,—1) are
degenerate with energy E = ¢, while the state |0,0) has energy F = —3e. Thus, we
have shown that the Hamiltonian of the hyperfine structure is diagonal in the
coupled basis.

We now add an external magnetic field of magnitude B along the z-direction, and
the magnetic moment of the electron interacts with that (Zeeman interaction). The
corresponding Hamiltonian is:

R R A N:: (3.12)
c h h
where g, &~ —2 is the gyromagnetic ratio of the electron and pup = eh/2m, is the Bohr
magneton. Find the matrix elements of H Z in the uncoupled and coupled bases.
Calculate the energies and eigenvectors of the total Hamiltonian H = Hpyps + H
in each case.
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For the uncoupled basis, we use the Hamiltonian of Eq. (3.5) and that of the Zeeman
coupling, and we find:

(R I R R S R B Y

M) [ e+ A 0 0 0
It 0 —evr A 2 0
HS = | 1) 0 2e —e— A 0 (3.13)
| 1) 0 0 0 e— A

where A = g.upB/2. In a very similar fashion as in part (a), the matrix is yet again
in block diagonal form. For the 1 x 1 blocks, we find:

W) =[11) (Bi=e+A), [)=) (BEj=ec—A). (3.14)
For the 2 x 2 block, we find:

[4h) = cos O [1]) +sinO 1) (B} = —e+ Ve + A?), (3.15)

[5) = —sinO[1]) + cosO 1) (B} = —e — Ve + A?) (3.16)

where

/12 2 _
cos@:; §in@=-— o= it 4 A. (3.17)

Vitat Vita? 2¢

We move on to the coupled basis where we use the Hamiltonian of Eq. (3.10) and
that of the Zeeman coupling. In matrix form, we have:

1,1) |1,0) |1,—1) ]0,0)

Vet A 0 0 0

z |].,0> 0 € O A
A2= 1 29 o 0 e—A 0 (3.18)

0,00\ 0 A 0 -3

where we used the expansion of |1,0),]0,0) in terms of the basis kets of the
uncoupled state so that we can determine the action of (S.),. The above matrix
looks to be in a block-diagonal form with one 1 x 1 and one 3 x 3 matrices.
However, we can further simplify it by swapping row 2 with row 3, and also
swapping column 2 with column 3 (a permutation operation). This operation does
not alter the resulting spectrum. You can think of it simply as relabeling of the
basis states. The Hamiltonian then becomes:

L) /et A 0 0 0
, L= o e—a 0 0

A= "0y o 0 c A (3.19)
0,00\ 0 0 A 3

Diagonalizing the 1 x 1 blocks yields:

¢1Z’C> =|L,1) (B{*=c+A), ‘¢f> =[1,-1) (Ef°=c—A), (3.20)
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while from diagonalizing the 2 x 2 block matrix, we get:

V) = cos®[10) +sin@[0,0) (EF = —c4 VAZH ), (321)
’%Z’C> — —sin®[1,0) + cos®|0,0) (E7° = —e — V4e2 + A?) (3:22)

where

1 ) 15} VA4e2 + A2 — 2¢
cosb=——, sindb=———, pg= 1 .

You should verify that in both representations we obtain the correct expressions
(according to the previous questions) in the limit of A — 0.

(3.23)

What form do the the energy eigenvalues take for small and large magnetic fields?
Sketch the energy eigenvalues as a function of the magnetic field.

For small magnetic fields, we use the expansion /1 + 22 ~ 1 + 2%/2 for small z.

IhllS:
/ < fz ‘

This is true for the energies in both bases, although they correspond to different
eigenstates. For low magnetic fields, the energies scale with the square of the
magnetic field.

For large magnetic fields, we use the same expansion, thus

, 4e? 2¢2
Ej, = —c+A 1+Fz—ej:A<l+F>z—eiA. (3.25)

In this limit, all energies (including F 4) scale linearly with the magnetic field. In
Figure 2, we plot the energies as a function of the parameter A. We identify the
correct behavior in the limiting cases of A — 0 and A — oo, that we have just
studied.

Which basis is more suitable for small magnetic fields and which basis is more
suitable for large magnetic fields?

For small magnetic fields, the hyperfine Hamiltonian dominates the Zeeman term,
thus the coupled basis is more suitable in this case, since it remains (roughly)
diagonal for € > A (see parts (a,b) for this). However, for large magnetic fields
€ <€ A, the Zeeman term dominates. The total Hamiltonian the two bases are:

0 11D 1) D

/A 0 0 0
thf o A 0 0

H? — | o 0 -4 0 (3.26)
[\ 0 0 0 -4
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Figure 2: The energies as a function of the magnetic field A.

and
1,1/ A 0 0 0
p 1,0y 0 0 0 A
HE =21 o 0 —A 0 (3.27)
0,00\ 0 A 0 0

Thus, the uncoupled basis is more suitable in this case, since it is diagonal.

Finally, we consider the interaction of the magnetic dipole moment of the proton to
the magnetic field. The associated Hamiltonian is:

a7 = —gpi‘;N (S,).B.. (3.28)

where g, ~ 5.585 is the gyromagnetic ratio of the proton and uy = eh/2m,, is the
nuclear magneton. How does the energy scale associated with the magnetic dipole
moment of the proton compare to that of the electron? What do you conclude? Is
the Zeeman term for the proton important?

We take the ratio of the corresponding energy scales,

gelB _ ge(eh/2m6) _ gey
Goltn gp(en/2my)  gyme

> 1. (3.29)

The mass of the proton is four orders of magnitude larger than that of the electron,
and using the gyromagnetic ratios of the proton and electron, the ratio is found
to be of the order of ~ 102. We conclude that the Zeeman term for the proton
is not very important compared to that of the electron, and thus we neglect this
contribution from the total Hamiltonian.

Page 11 of 11



	Finding Clebsch–Gordan coefficients
	Pair of particles
	Hyperfine Splitting of a Hydrogen Ground State in a Magnetic Field

