
Quantum Mechanics I
Week 14 (Solutions)

Spring Semester 2025

1 Finding Clebsch–Gordan coefficients

Consider two angular momenta Ĵ1 and Ĵ2 with j1 = 1 and j2 = 3
2
. We define

• the (tensorial) product basis

B1 =

{
|j1 = 1,m1⟩ ⊗

∣∣∣∣j2 = 3

2
,m2

〉}
≡ {|m1⟩ |m2⟩} , (1.1)

• the total angular momentum basis Ĵ = Ĵ1 + Ĵ2,

B2 =

{∣∣∣∣j1 = 1, j2 =
3

2
, j,m

〉}
≡ {|j,m⟩} . (1.2)

(a) What is the dimension of the Hilbert space for this system?

The first angular momentum can be in 3 = 2j1 + 1 basis states, and the second
angular momentum can be in 4 = 2j2 + 1 basis states. Thus the dimension of the
Hilbert space is 3× 4 = 12.

(b) What are the possible values of the total angular momentum j, obtained by adding
Ĵ1 and Ĵ2?

Using the formulas of addition of angular momenta, the possible values of the total
angular momentum are |j1− j2|, .. |j1− j2|+1, ..., j1+ j2. In this case, the possible
values of the total angular momentum are j = 5/2, j = 3/2, and j = 1/2.

(c) On the plane (m1,m2), plot the possible values of m1 and m2, and draw the lines
m = constant, where m = m1 +m2.

The possible values of m1, m2, and the lines of constant m = m1 +m2 are shown in
Fig. 1.

(d) What is the dimension of the subspace with a fixed m for each possible m?

The dimension is equal to the number of points lying on the lines in Fig. 1. The
space with m = 5/2 has only one state (| + 1,+3/2⟩). This corresponds to the
top-right corner in Fig. 1.

The space with m = 3/2 has two states (|0,+3/2⟩, | + 1,+1/2⟩). The space with
m = 1/2 has three states (| − 1,+3/2⟩, |0,+1/2⟩, |+ 1,−1/2⟩).
The result for any m = −5/2,−3/2,−1/2, 1/2, 3/2, 5/2 can be written compactly
as: g(m) = |7/2− |m||.
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Figure 1: Possible values of m1 and m2, and of the lines at which m1 +m2 is constant.

(e) Calculate the Clebsch–Gordan coefficients ⟨m1,m2|j,m⟩ for j = 5/2 and −5
2
≤ m ≤

5
2
. Hint: Apply J− to

∣∣j = 5
2
,m = 5

2

〉
and go "up the ladder".

From the theory of addition of angular momenta, we know that we can break the
Hilbert space of the 2 angular momenta, which as seen before is 12-dimensional, into
a sector with j = 5/2, a sector with j = 3/2, and a sector with j = 1/2. The state1

|m1 = +1,m2 = +3/2⟩ has m = +5/2, which is the maximum possible value of the
angular momentum. This state must belong to the sector with j = 5/2. So the first
Clebsh-Gordan coefficient which we find is ⟨1,+1, 3/2,+3/2|5/2,+5/2⟩ = 1.

The states m = +3/2 are as seen before, |1, 0; 3/2,+3/2⟩ and |1, 1; 3/2, 1/2⟩, we
have to find the linear combinations of these which belong respectively to the sector
with j = 5/2 and with j = 3/2.

To do this we can use that Ĵ−|5/2,+5/2⟩ must have j = 5/2 (as J− commutes
with the operator Ĵ2. Using Ĵ = ĵ1 + ĵ2 and using
ĵ−1 |j1,m1; j2,m2⟩ =

√
j1(j1 + 1)−m1(m1 − 1)|j1,m1 − 1; j2,m2⟩,

1In the following, to clarify the notation, we include in the definition of the states their total angular
momentum, so that the states are written as|j1m1, j2m2⟩. For the states of the composite system in the
j, m basis we write |j,m⟩.
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ĵ−2 |j1,m1; j2,m2⟩ =
√
j2(j2 + 1)−m2(m2 − 1)|j1,m1; j2,m2 − 1⟩ we find:

Ĵ−|5/2,+5/2⟩ =
(
ĵ1 + ĵ2

)
|1,+1; 3/2,+3/2⟩

=

√
5

2
×
(
5

2
+ 1

)
− 5

2
×
(
5

2
− 1

)
|5/2,+3/2⟩ =

√
5|5/2,+3/2⟩

=
√
1× 2− 1× 0|1, 0; 3/2,+3/2⟩

+

√
3

2
× 5

2
− 3

2
× 1

2
|1,+1; 3/2,+1/2⟩

=
√
2

∣∣∣∣1, 0; 32 ,+3

2

〉
+
√
3

∣∣∣∣1,+1;
3

2
,+

1

2

〉
,

(1.3)

which implies ∣∣∣∣52 ,+3

2

〉
=

√
2

5

∣∣∣∣1, 0; 32 ,+3

2

〉
+

√
3

5

∣∣∣∣1,+1, ;
3

2
,+

1

2

〉
. (1.4)

Applying Ĵ− other times, we get iteratively all states belonging to the j = 5/2
sector. The result is:∣∣∣∣52 ,+1

2

〉
=

1√
5
2
× (5

2
+ 1)− 3

2

(
3
2
− 1
) ×

(√
2

5

(√
2

∣∣∣∣1,−1;
3

2
,+

3

2

〉

+
√
3

∣∣∣∣1, 0; 32 ,+1

2

〉)
+

√
3

5

(√
2

∣∣∣∣1, 0; 32 ,+1

2

〉
+ 2

∣∣∣∣1,+1;
3

2
,−1

2

〉))

=
1√
10

(∣∣∣∣1,−1;
3

2
,+

3

2

〉
+
√
6

∣∣∣∣1, 0; 32 ,+1

2

〉
+
√
3

∣∣∣∣1,+1;
3

2
,−1

2

〉)
.

(1.5)

Similarly,∣∣∣∣52 ,−1

2

〉
=

1√
10

(∣∣∣∣1, 1; 32 ,−3

2

〉
+
√
6

∣∣∣∣1, 0; 32 ,−1

2

〉
+
√
3

∣∣∣∣1,−1;
3

2
,
1

2

〉)
, (1.6)

∣∣∣∣52 ,−3

2

〉
=

√
2

5

∣∣∣∣1, 0; 32 ,−3

2

〉
+

√
3

5

∣∣∣∣1,−1;
3

2
,−1

2

〉
, (1.7)∣∣∣∣52 ,−5

2

〉
=

∣∣∣∣1,−1;
3

2
,−3

2

〉
. (1.8)

(f) Using the orthogonality relation ⟨j′,m′|j,m⟩ = δj′j, express
∣∣j = 3

2
,m = 3

2

〉
in the

basis B1.

We have expressed all the states
∣∣5
2
,m
〉

in B1, and now we move to
∣∣3
2
, 3
2

〉
. It will

be a linear combination of |1⟩
∣∣1
2

〉
and |0⟩

∣∣3
2

〉
, just like

∣∣5
2
, 3
2

〉
. The idea here is that,

using a linear combination of these two vectors we can build only two vectors (up
to an overall phase) that are orthonormal. Thus,

∣∣3
2
, 3
2

〉
is the only vector in the
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sub-space m = 3
2

orthonormal to
∣∣5
2
, 3
2

〉
. We express

∣∣3
2
, 3
2

〉
using the two states in

B1 with m = 3
2
: ∣∣3

2
, 3
2

〉
= α |0⟩

∣∣3
2

〉
+ β |1⟩

∣∣1
2

〉
. (1.9)

Then, its product with
∣∣5
2
, 3
2

〉
is

〈
5
2
, 3
2

∣∣ 3
2
, 3
2

〉
=
√

2
5
α +

√
3
5
β. (1.10)

By the orthogonality relation this product must be zero, so we have α
β
= −

√
3
2
.

Using the normalization condition |α|2 + |β|2 = 1 and assuming the phase of α to
be zero, we obtain ∣∣3

2
, 3
2

〉
=
√

3
5
|0⟩
∣∣3
2

〉
−
√

2
5
|1⟩
∣∣1
2

〉
. (1.11)

(g) Calculate the Clebsch–Gordan coefficients ⟨m1,m2|j,m⟩ for j = 3/2 and j = 1/2.

The coefficients for
∣∣3
2
, 3
2

〉
were determined in the previous question. Now, for the

state
∣∣3
2
, 1
2

〉
, we use the same method as in part (e). We find∣∣3

2
, 1
2

〉
=
√

2
5

∣∣−1
〉∣∣3

2

〉
+
√

1
15

|0⟩
∣∣1
2

〉
−
√

8
15

|1⟩
∣∣−1

2

〉
. (1.12)

As for the states
∣∣3
2
,m
〉

with m < 0, we resort to symmetries. In particular, for
each pair of (j,m), there exists a phase factor αj such that ∀m1,m2, we have:

⟨m1,m2|j,m⟩ = eiαj ⟨−m1,−m2|j,−m⟩ . (1.13)

This phase depends only on j and not on m. Since all Clebsch-Gordan coefficients
are real, the phase takes only two values, ±1. Thus,

⟨m1,m2|j,m⟩ = (−1)j1+j2−j ⟨−m1,−m2|j,−m⟩ (1.14)

We only need to determine the sign for one term: for example, when applying Ĵ−

to Eq. (1.12), the state |1⟩
∣∣−1

2

〉
becomes |1⟩

∣∣−3
2

〉
and its coefficient acquires a

positive factor ℏ
√
· · ·, which is therefore negative. We deduce that for j = 3

2
the

Clebsch–Gordan coefficients are antisymmetric for m→ −m. Therefore we have∣∣3
2
,−1

2

〉
=
√

8
15

|−1⟩
∣∣1
2

〉
−
√

1
15

|0⟩
∣∣−1

2

〉
−
√

2
5
|1⟩
∣∣−3

2

〉
, (1.15)

∣∣3
2
,−3

2

〉
=
√

2
5
|−1⟩

∣∣−1
2

〉
−
√

3
5
|0⟩
∣∣−3

2

〉
. (1.16)

For the case of j = 1/2, we follow the same procedure as with the j = 3/2 case.
The state

∣∣1
2
, 1
2

〉
belongs to the sub-space generated by the states |−1⟩

∣∣3
2

〉
, |0⟩

∣∣1
2

〉
,

and |1⟩
∣∣−1

2

〉
, and is orthogonal to the states

∣∣5
2
, 1
2

〉
and

∣∣3
2
, 1
2

〉
whose decompositions

we already know in the basis |m1⟩ |m2⟩. To simplify the calculations, we notice
that, as

∣∣5
2
, 1
2

〉
and

∣∣3
2
, 1
2

〉
are normalized,

∣∣1
2
, 1
2

〉
is obtained (up to a phase) by the

vector product of these two vectors (since all of them have to be orthogonal to each
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other). In the basis {|−1⟩
∣∣3
2

〉
, |0⟩

∣∣1
2

〉
, |1⟩

∣∣−1
2

〉
} we obtain the coefficients of this

vector product: 
√

1
10√
3
5√
3
10

×


√

2
5√
1
15

−
√

8
15

 =


−
√

1
2√

1
3

−
√

1
6

 . (1.17)

By convention, we choose
〈
1, 1

2

∣∣1
2
, 1
2

〉
> 0; therefore∣∣1

2
, 1
2

〉
= 1√

2
|−1⟩

∣∣3
2

〉
− 1√

3
|0⟩
∣∣1
2

〉
+ 1√

6
|1⟩
∣∣−1

2

〉
. (1.18)

Applying the ladder operator Ĵ− to the left-hand side and Ĵ−
1 +Ĵ−

2 to the right-hand
side, we obtain∣∣1

2
,−1

2

〉
= 1√

6
|−1⟩

∣∣1
2

〉
− 1√

3
|0⟩
∣∣−1

2

〉
+
√

1
2
|1⟩
∣∣−3

2

〉
. (1.19)

The coefficients are symmetric under the transformation m→ −m.

2 Pair of particles
We consider a system of two particles with spins s1 = 3

2
and s2 = 1

2
, and their interaction

is described by the following approximate Hamiltonian

Ĥ =
4E0

ℏ2
Ŝ1 · Ŝ2, (2.1)

where E0 is a constant with units of energy. The system is initialized in the following
simultaneous eigenstate of S2

1 , S
2
2 , S1z, S2z:

|ψ(0)⟩ =
∣∣3
2
, 1
2
; 1
2
, 1
2

〉
. (2.2)

Determine the state of the system at time t > 0. What is the probability of measuring
the state

∣∣3
2
, 1
2
; 3
2
,−1

2

〉
? We use the notation |s1, s2;m1,m2⟩.

Due to the coupling term between the two spins, the Hamiltonian is not diagonal in the
uncoupled basis. We can circumvent this by expressing it in the coupled basis. Firstly,
using Ŝ1 + Ŝ2 = Ŝ, we can readily show that:

Ŝ1 · Ŝ2 =
1

2

[
Ŝ
2
− Ŝ

2

1 − Ŝ
2

2

]
. (2.3)

Using this result, the Hamiltonian takes the following form:

Ĥ =
2E0

ℏ2
[
Ŝ
2
− Ŝ

2

1 − Ŝ
2

2

]
. (2.4)

It is easily verified that the Hamiltonian is diagonal in the coupled basis |s1, s2; s,m⟩ since

S2 |s1, s2; s,m⟩ = ℏ2s(s+ 1) |s1, s2; s,m⟩ , (2.5)
S2
1/2 |s1, s2; s,m⟩ = ℏ2s1,2(s1,2 + 1) |s1, s2; s,m⟩ . (2.6)
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To determine the time evolution of the system, we need to express the initial state, which
is simultaneous eigenstate of S2

1 , S
2
2 , S1z, S2z, in the coupled basis |s1, s2; s,m⟩. The

initial state has a total quantum number m = 1 and from this fact, we can write down a
genral superposition ∣∣3

2
, 1
2
; 1, 1

〉
= a

∣∣3
2
, 1
2
; 3
2
,−1

2

〉
+ b
∣∣3
2
, 1
2
; 1
2
, 1
2

〉
, (2.7)∣∣3

2
, 1
2
; 2, 1

〉
= c

∣∣3
2
, 1
2
; 1
2
, 1
2

〉
+ d

∣∣3
2
, 1
2
; 3
2
,−1

2

〉
(2.8)

where we have used the convention |s1, s2; s,m⟩ and |s1, s2;m1,m2⟩ for the kets in the
coupled and uncoupled bases, respectively. Our task now is to determine the coefficients.
We start first by applying the raising operator on the first state,

Ŝ+
∣∣3
2
, 1
2
; 1, 1

〉
= aℏ

∣∣3
2
, 1
2
; 3
2
, 1
2

〉
+ bℏ

√
3
∣∣3
2
, 1
2
; 3
2
, 1
2

〉
. (2.9)

Since Ŝ+
∣∣3
2
, 1
2
; 1, 1

〉
, and due to the normalization condition, we find a = −

√
3/2 and

b = 1/2. Similarly, for the second state, we have:

Ŝ+
∣∣3
2
, 1
2
; 2, 1

〉
= cℏ

√
3
∣∣3
2
, 1
2
; 3
2
, 1
2

〉
+ dℏ

∣∣3
2
, 1
2
; 3
2
, 1
2

〉
, (2.10)

and since Ŝ+
∣∣3
2
, 1
2
; 2, 1

〉
, we obtain c =

√
3/2 and d = 1/2 (and the normalization condition

was used). In summary, we have:

∣∣3
2
, 1
2
; 1, 1

〉
= −

√
3

2

∣∣3
2
, 1
2
; 3
2
,−1

2

〉
+

1

2

∣∣3
2
, 1
2
; 1
2
, 1
2

〉
, (2.11)

∣∣3
2
, 1
2
; 2, 1

〉
=

√
3

2

∣∣3
2
, 1
2
; 1
2
, 1
2

〉
+

1

2

∣∣3
2
, 1
2
; 3
2
,−1

2

〉
. (2.12)

Using this result, we can write our initial state in terms of the coupled states by simple
algebraic manipulation,

∣∣3
2
, 1
2
; 1
2
, 1
2

〉
=

√
3

2

∣∣3
2
, 1
2
; 2, 1

〉
+

1

2

∣∣3
2
, 1
2
; 1, 1

〉
. (2.13)

We continue by considering the time-evolved state by applying the time evolution operator
|ψ(t)⟩ = exp{−iĤt/ℏ} |ψ(0)⟩. We write this explicitly as follows:

|ψ(t)⟩ = exp
{
− i

(2E0/ℏ2)t
ℏ

[
Ŝ
2
− Ŝ

2

1 − Ŝ
2

2

]}[√3

2

∣∣3
2
, 1
2
; 2, 1

〉
+

1

2

∣∣3
2
, 1
2
; 1, 1

〉 ]
=

=

√
3

2
e−iE2t/ℏ

∣∣3
2
, 1
2
; 2, 1

〉
+

1

2
e−iE1t/ℏ

∣∣3
2
, 1
2
; 1, 1

〉
where E1 = −5E0 and E2 = 3E0. In the first to second line, we have used Eqs. (2.5),
(2.6).

Finally, the probability to find the system in the state
∣∣3
2
, 1
2
; 3
2
,−1

2

〉
is given by:

P = |
〈
3
2
, 1
2
; 3
2
,−1

2

∣∣ψ(t)〉 |2 = 3

4
sin2 (E2 − E1)t

ℏ
=

3

4
sin2 8E0t

ℏ
. (2.14)
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3 Hyperfine Splitting of a Hydrogen Ground State in
a Magnetic Field

A. The hyperfine splitting refers to the splitting of energy levels in an atom due to the
interaction between the nucleus and the electron cloud. For the Hydrogen atom, this is
the interaction between the proton and the electron. This splitting is caused by
electromagnetic multipole interaction and results in very small energy shifts and
splitting. The corresponding Hamiltonian of the interaction is:

HHFS =
4ϵ

ℏ2
Se · Sp. (3.1)

Note that this is the simplified form of the interaction, which is relevant for the ground
state of the Hydrogen atom. The parameter ϵ is a positive constant with units of energy,
and it is defined as:

ϵ =
µ0gpe

2

3πmpmea3
, (3.2)

where µ0 is the magnetic permeability of free space, gp is the gyromagnetic ratio of the
proton, e is the electron charge and mp,me are the masses of the proton and electron,
respectively.

There are two natural bases in this problem. The uncoupled basis |me,mp⟩ (first entry:
electron, second entry: proton) is

|1⟩ = |↑↑⟩ , |2⟩ = |↑↓⟩ , |3⟩ = |↓↑⟩ , |4⟩ = |↓↓⟩ . (3.3)

The coupled basis |j m⟩ of eigenstates of J2 and Jz, is

|1⟩ = |1, 1⟩ , |2⟩ = |1, 0⟩ , |3⟩ = |1,−1⟩ , |4⟩ = |0, 0⟩ , (3.4)

where J = Se + Sp.

(a) Find the matrix elements of HHFS in the uncoupled basis. Calculate the energy
eigenvalues and the eigenvectors.

We write the Hamiltonian in terms of the components of the spin operators of each
particle, as follows:

Ĥ = ϵ[σx
eσ

x
p + σy

eσ
y
p + σz

eσ
z
p]. (3.5)

where σx,y,z
p,e are the Pauli matrices. Acting on each ket of the uncoupled basis with

the above Hamiltonian, and then taking the bra for all possible combinations, we find
the matrix elements of the Hamiltonian ⟨i|H|j⟩ where i, j ∈ {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩}.
The corresponding matrix form is

H =


| ↑↑⟩ | ↑↓⟩ | ↓↑⟩ | ↓↓⟩

| ↑↑⟩ ϵ 0 0 0
| ↑↓⟩ 0 −ϵ 2ϵ 0
| ↓↑⟩ 0 2ϵ −ϵ 0
| ↓↓⟩ 0 0 0 ϵ

. (3.6)
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Due to the block-diagonal form of the above matrix, we can easily extract the
energies and the corresponding eigenvectors. For the 1× 1 blocks, we have:

|ψ1⟩ = |↑, ↑⟩ (E1 = ϵ), |ψ4⟩ = |↓, ↓⟩ (E4 = ϵ). (3.7)

Then, we have one 2× 2 block, which we can diagonalize and find:

|ψ2⟩ =
1√
2

[
|↑↓⟩+|↓↑⟩

]
(E3 = ϵ), |ψ3⟩ =

1√
2

[
|↑↓⟩−|↓↑⟩

]
, (E3 = −3ϵ). (3.8)

There is a three-fold degeneracy in the energy E = ϵ, which we recognize as the
triplet state.

(b) Find the matrix elements of HHFS in the coupled basis. Calculate the energy
eigenvalues and the eigenvectors.

The Hamiltonian is now expressed in terms of the total spin operator. By using the
fact that Ŝe + Ŝp = Ŝ, we find:

Ŝe · Ŝp =
1

2

[
Ŝ
2
− Ŝ

2

e − Ŝ
2

p

]
. (3.9)

The Hamiltonian then takes the following form:

Ĥ =
2ϵ

ℏ2
[
Ŝ
2
− Ŝ

2

e − Ŝ
2

p

]
. (3.10)

Following a very similar procedure as in part (a), we can compute the matrix
elements ⟨i|H|j⟩ where i, j ∈ {|1, 1⟩ , |1, 0⟩ , |1,−1⟩ , |0, 0⟩}. The corresponding
matrix form is

H =


|1, 1⟩ |1, 0⟩ |1,−1⟩ |0, 0⟩

|1, 1⟩ ϵ 0 0 0
|1, 0⟩ 0 ϵ 0 0

|1,−1⟩ 0 0 ϵ 0
|0, 0⟩ 0 0 0 −3ϵ

. (3.11)

This matrix is already in diagonal form. The states |1, 1⟩ , |1, 0⟩ , |1,−1⟩ are
degenerate with energy E = ϵ, while the state |0, 0⟩ has energy E = −3ϵ. Thus, we
have shown that the Hamiltonian of the hyperfine structure is diagonal in the
coupled basis.

(c) We now add an external magnetic field of magnitude B along the z-direction, and
the magnetic moment of the electron interacts with that (Zeeman interaction). The
corresponding Hamiltonian is:

ĤZ
e = −geµB

ℏ
Se · B =

geµB

ℏ
(Se)zB (3.12)

where ge ≈ −2 is the gyromagnetic ratio of the electron and µB = eℏ/2me is the Bohr
magneton. Find the matrix elements of ĤZ

e in the uncoupled and coupled bases.
Calculate the energies and eigenvectors of the total Hamiltonian Ĥ = ĤHFS + ĤZ

e

in each case.
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For the uncoupled basis, we use the Hamiltonian of Eq. (3.5) and that of the Zeeman
coupling, and we find:

HZ
e =


| ↑↑⟩ | ↑↓⟩ | ↓↑⟩ | ↓↓⟩

| ↑↑⟩ ϵ+ A 0 0 0
| ↑↓⟩ 0 −ϵ+ A 2ϵ 0
| ↓↑⟩ 0 2ϵ −ϵ− A 0
| ↓↓⟩ 0 0 0 ϵ− A

 (3.13)

where A = geµBB/2. In a very similar fashion as in part (a), the matrix is yet again
in block diagonal form. For the 1× 1 blocks, we find:

|ψ′
1⟩ = |↑↑⟩ (E ′

1 = ϵ+ A), |ψ′
4⟩ = |↓↓⟩ (E ′

4 = ϵ− A). (3.14)

For the 2× 2 block, we find:

|ψ′
2⟩ = cosΘ |↑↓⟩+ sinΘ |↓↑⟩ (E ′

2 = −ϵ+
√
4ϵ2 + A2), (3.15)

|ψ′
3⟩ = − sinΘ |↑↓⟩+ cosΘ |↓↑⟩ (E ′

3 = −ϵ−
√
4ϵ2 + A2) (3.16)

where

cosΘ =
1√

1 + α2
, sinΘ =

α√
1 + α2

, α =

√
4ϵ2 + A2 − A

2ϵ
. (3.17)

We move on to the coupled basis where we use the Hamiltonian of Eq. (3.10) and
that of the Zeeman coupling. In matrix form, we have:

HZ
e =


|1, 1⟩ |1, 0⟩ |1,−1⟩ |0, 0⟩

|1, 1⟩ ϵ+ A 0 0 0
|1, 0⟩ 0 ϵ 0 A

|1,−1⟩ 0 0 ϵ− A 0
|0, 0⟩ 0 A 0 −3ϵ

 (3.18)

where we used the expansion of |1, 0⟩ , |0, 0⟩ in terms of the basis kets of the
uncoupled state so that we can determine the action of (Se)z. The above matrix
looks to be in a block-diagonal form with one 1 × 1 and one 3 × 3 matrices.
However, we can further simplify it by swapping row 2 with row 3, and also
swapping column 2 with column 3 (a permutation operation). This operation does
not alter the resulting spectrum. You can think of it simply as relabeling of the
basis states. The Hamiltonian then becomes:

HZ
e =


|1, 1⟩ |1,−1⟩ |1, 0⟩ |0, 0⟩

|1, 1⟩ ϵ+ A 0 0 0
|1,−1⟩ 0 ϵ− A 0 0
|1, 0⟩ 0 0 ϵ A
|0, 0⟩ 0 0 A −3ϵ

. (3.19)

Diagonalizing the 1× 1 blocks yields:∣∣∣ψZ,c
1

〉
= |1, 1⟩ (EZ,c

1 = ϵ+ A),
∣∣∣ψZ,c

4

〉
= |1,−1⟩ (EZ,c

4 = ϵ− A), (3.20)
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while from diagonalizing the 2× 2 block matrix, we get:∣∣∣ψZ,c
2

〉
= cosΦ |1, 0⟩+ sinΦ |0, 0⟩ (EZ,c

2 = −ϵ+
√
4ϵ2 + A2), (3.21)∣∣∣ψZ,c

3

〉
= − sinΦ |1, 0⟩+ cosΦ |0, 0⟩ (EZ,c

3 = −ϵ−
√
4ϵ2 + A2) (3.22)

where

cosΦ =
1√

1 + β2
, sinΦ =

β√
1 + β2

, β =

√
4ϵ2 + A2 − 2ϵ

A
. (3.23)

You should verify that in both representations we obtain the correct expressions
(according to the previous questions) in the limit of A→ 0.

(d) What form do the the energy eigenvalues take for small and large magnetic fields?
Sketch the energy eigenvalues as a function of the magnetic field.

For small magnetic fields, we use the expansion
√
1 + x2 ≈ 1 + x2/2 for small x.

Thus:

E ′
2,3 = −ϵ± 2ϵ

√
1 +

A2

4ϵ2
→ −ϵ± 2ϵ

(
1 +

A2

8ϵ2

)
. (3.24)

This is true for the energies in both bases, although they correspond to different
eigenstates. For low magnetic fields, the energies scale with the square of the
magnetic field.

For large magnetic fields, we use the same expansion, thus

E ′
2,3 = −ϵ± A

√
1 +

4ϵ2

A2
≈ −ϵ± A

(
1 +

2ϵ2

A2

)
≈ −ϵ± A. (3.25)

In this limit, all energies (including E1,4) scale linearly with the magnetic field. In
Figure 2, we plot the energies as a function of the parameter A. We identify the
correct behavior in the limiting cases of A → 0 and A → ∞, that we have just
studied.

(e) Which basis is more suitable for small magnetic fields and which basis is more
suitable for large magnetic fields?

For small magnetic fields, the hyperfine Hamiltonian dominates the Zeeman term,
thus the coupled basis is more suitable in this case, since it remains (roughly)
diagonal for ϵ ≫ A (see parts (a,b) for this). However, for large magnetic fields
ϵ≪ A, the Zeeman term dominates. The total Hamiltonian the two bases are:

HZ
e →


| ↑↑⟩ | ↑↓⟩ | ↓↑⟩ | ↓↓⟩

| ↑↑⟩ A 0 0 0
| ↑↓⟩ 0 A 0 0
| ↓↑⟩ 0 0 −A 0
| ↓↓⟩ 0 0 0 −A

 (3.26)
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Figure 2: The energies as a function of the magnetic field A.

and

HZ
e →


|1, 1⟩ |1, 0⟩ |1,−1⟩ |0, 0⟩

|1, 1⟩ A 0 0 0
|1, 0⟩ 0 0 0 A

|1,−1⟩ 0 0 −A 0
|0, 0⟩ 0 A 0 0

 (3.27)

Thus, the uncoupled basis is more suitable in this case, since it is diagonal.

(f) Finally, we consider the interaction of the magnetic dipole moment of the proton to
the magnetic field. The associated Hamiltonian is:

ĤZ
p = −gpµN

ℏ
(Sp)zBz, (3.28)

where gp ≈ 5.585 is the gyromagnetic ratio of the proton and µN = eℏ/2mp is the
nuclear magneton. How does the energy scale associated with the magnetic dipole
moment of the proton compare to that of the electron? What do you conclude? Is
the Zeeman term for the proton important?

We take the ratio of the corresponding energy scales,

geµB

gpµN

=
ge(eℏ/2me)

gp(eℏ/2mp)
=
gemp

gpme

≫ 1. (3.29)

The mass of the proton is four orders of magnitude larger than that of the electron,
and using the gyromagnetic ratios of the proton and electron, the ratio is found
to be of the order of ∼ 102. We conclude that the Zeeman term for the proton
is not very important compared to that of the electron, and thus we neglect this
contribution from the total Hamiltonian.
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